60 research outputs found

    Effect of boron doping on grain boundary cohesion in technically pure molybdenum investigated via meso-scale three-point-bending tests

    Get PDF
    Molybdenum has numerous advantageous functional and high-temperature properties. However, plastic deformation as well as structural applications are limited due to a propensity for brittle, intercrystalline failure, especially at low temperatures. It is well known that oxygen segregations have a detrimental effect, whereas it is assessed that carbon and/or boron have a beneficial effect on grain boundary cohesion. An advanced approach for the improvement of these interfaces is segregation engineering, e.g. the addition of cohesion enhancing elements segregating to the grain boundaries. To investigate early stages of crack formation, three-point bending tests on recrystallized commercially pure and boron micro-doped molybdenum were conducted between −28 \ub0C and room temperature. The tensile-loaded top surface of the specimens was examined post-mortem close to the final fracture area via scanning electron microscopy. The occurring separations of grains are investigated for distinct features and the chemical composition of the interface is complementary measured by atom probe tomography

    Evolution of nano-pores during annealing of technically pure molybdenum sheet produced from different sintered formats

    Get PDF
    Molybdenum is a refractory metal with no phase transformation in the solid state and a high melting point. It is therefore an excellent structural material for various high temperature applications. Especially in this field of operation, significant creep resistance is essential. To achieve this, a microstructure with grains in the range of millimeters is desired. However, as demonstrated in the present study, the onset temperature for secondary recrystallization, which would lead to a beneficial grain size, is among other things dependent on the initial dimensions of the sintered part. One possible reason for the different microstructural evolutions is the influence of residual pores in sub-micrometer size. Sheets were thus fabricated via three different production routes employing the same initial Mo powder to exclude chemical variation as an influencing factor. The samples were investigated by in-situ small-angle X-ray scattering at a synchrotron radiation source with two different heating rates. Additionally, selected annealed samples were studied ex-situ with high energy X-rays. The apparent volume fraction of pores is compared to a volatilization model for the vaporization of typical accompanying elements and the induced thermal expansion

    Endosteal biologic augmentation for surgical fixation of displaced femoral neck fractures

    Full text link
    Objectives: To report outcomes of a cohort with displaced Femoral Neck Fractures (FNF) treated with a length/angle-stable construct augmented with an endosteal fibular allograft serving as a biologic dowel. Design: Prospective Setting: Level I Trauma Center Patients: The study group consists of twenty-seven patients with isolated FNF surgically treated by a single surgeon. Intervention: Open reduction of the femoral neck, fixed with a length- and angle stable-construct of two fully threated cannulated screws augmented with an endosteal fibular allograft serving as a biologic dowel. Main Outcome Measurements: Clinical and radiographic outcomes of the fixation construct and the viability of both the femoral head and the fibular allograft, host response to the allograft and osseous union was evaluated using a specialized sequence of contrast-enhanced MRI obtained at 3 and 12 months postoperatively. Results: This construct resulted in high union rates (89%; 24/27). Two patients suffered early catastrophic failure and one patient developed fracture non-union, all of wish underwent uneventful conversion to total hip arthroplasty. Three (11%) additional patients had removal of symptomatic implants. The clinical and radiographic outcomes were excellent. Twelve months MRIs revealed either partial or complete osseous incorporation of 86% the fibular allografts without signs of adverse reaction of the host to the allograft. Femoral head osteonecrosis segments were noted in 76% of patients on MRI, however radiographically there were no sign of osteonecrosis or segmental collapse. Conclusion: The fibular allograft reconstructs the comminuted femoral neck, and the osteointegration overtime increases the strength of the host-bone-graft interface. This added strength seems to provide the stability needed to better preserve the intra-operative reduction, obtain good outcomes and reduce the complications associated with FNF. Level of Evidence: Therapeutic Level IV. See Instructions for Authors for a complete description of levels of evidence

    What is the relevance of the tip-apex distance as a predictor of lag screw cut-out?

    Get PDF
    Using a simple mathematical formulation, the relationship between the position of the lag screw tip (relevant to both intramedullary and extramedullary devices) and the concept of tip-apex distance (TAD) was derived. TAD is widely used in operating theaters as a surgical guideline in relation to the fixation of trochanteric fractures, and in clinical studies as a predictor of lag screw cut-out. In order to visualize better this concept, the locus of points having the same TAD was plotted and the dependence of TAD on the location of the lag screw tip was also reported. It was shown that TAD should be adjusted for the size of the femoral head (a variable which varies a lot according to the sex of the patient) while no correlation was found between TAD and bone morphometry indices obtained from micro-CT data (BV/TV and Tb.Th). Therefore, these results seem to suggest that TAD lacks mechanical justification and that predictors which are based on mechanical properties, such as bone density, should be investigated further

    Ion channel clustering enhances weak electric field detection by neutrophils: apparent roles of SKF96365-sensitive cation channels and myeloperoxidase trafficking in cellular responses

    Full text link
    We have tested Galvanovskis and Sandblom’s prediction that ion channel clustering enhances weak electric field detection by cells as well as how the elicited signals couple to metabolic alterations. Electric field application was timed to coincide with certain known intracellular chemical oscillators (phase-matched conditions). Polarized, but not spherical, neutrophils labeled with anti-K v 1.3, FL-DHP, and anti-TRP1, but not anti-T-type Ca 2+ channels, displayed clusters at the lamellipodium. Resonance energy transfer experiments showed that these channel pairs were in close proximity. Dose-field sensitivity studies of channel blockers suggested that K + and Ca 2+ channels participate in field detection, as judged by enhanced oscillatory NAD(P)H amplitudes. Further studies suggested that K + channel blockers act by reducing the neutrophil’s membrane potential. Mibefradil and SKF93635, which block T-type Ca 2+ channels and SOCs, respectively, affected field detection at appropriate doses. Microfluorometry and high-speed imaging of indo-1-labeled neutrophils was used to examine Ca 2+ signaling. Electric fields enhanced Ca 2+ spike amplitude and triggered formation of a second traveling Ca 2+ wave. Mibefradil blocked Ca 2+ spikes and waves. Although 10 μM SKF96365 mimicked mibefradil, 7 μM SKF96365 specifically inhibited electric field-induced Ca 2+ signals, suggesting that one SKF96365-senstive site is influenced by electric fields. Although cells remained morphologically polarized, ion channel clusters at the lamellipodium and electric field sensitivity were inhibited by methyl-β-cyclodextrin. As a result of phase-matched electric field application in the presence of ion channel clusters, myeloperoxidase (MPO) was found to traffic to the cell surface. As MPO participates in high amplitude metabolic oscillations, this suggests a link between the signaling apparatus and metabolic changes. Furthermore, electric field effects could be blocked by MPO inhibition or removal while certain electric field effects were mimicked by the addition of MPO to untreated cells. Therefore, channel clustering plays an important role in electric field detection and downstream responses of morphologically polarized neutrophils. In addition to providing new mechanistic insights concerning electric field interactions with cells, our work suggests novel methods to remotely manipulate physiological pathways.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46726/1/249_2005_Article_1.pd

    Atom probe study of grain boundary segregation in technically pure molybdenum

    No full text
    Molybdenum, a metal with excellent physical, chemical and high-temperature properties, is an interesting material for applications in lighting-technology, high performance electronics, high temperature furnace construction and coating technology. However, its applicability as a structural material is limited because of the poor oxidation resistance at high temperatures and a brittle-to-ductile transition around room temperature, which is influenced by the grain size and the content of interstitial impurities at the grain boundaries. Due to the progress of the powder metallurgical production during the last decades, the amount of impurities in the current quality of molybdenum has become so small that surface sensitive techniques are not applicable anymore. Therefore, the atom probe, which allows the detection of small amounts of impurities as well as their location, seems to be a more suitable technique. However, a site-specific specimen preparation procedure for grain boundaries in refractory metals with a dual focused ion beam/scanning electron microscope is still required. The present investigation describes the development and successful application of such a site-specific preparation technique for grain boundaries in molybdenum, which is significantly improved by a combination with transmission electron microscopy. This complimentary technique helps to improve the visibility of grain boundaries during the last preparation steps and to evidence the presence of grain and subgrain boundaries without segregants in atom probe specimens. Furthermore, in industrially processed and recrystallized molybdenum sheets grain boundary segregation of oxygen, nitrogen and potassium is successfully detected close to segregated regions which are believed to be former sinter pores
    • …
    corecore